Bremen

Advanced Computer Graphics Generalized Barycentric Coordinates

G. Zachmann University of Bremen, Germany cgvr.informatik.uni-bremen.de

simplices)

- 3. What does one do with non-convex (concave) areas?
- 4. What does one do when the area is not limited by a polyline (piecewise linear curve), but rather by a smooth, closed convex curve?

Generalized Barycentric Coordinates

2

1. What does one do with (convex) 2D polygons with k > 3 sides?

2. Similarly, what does one do with polyhedra in

n dimensions with k > *n*+1 sides? (i.e., non-

Generalized Barycentric Coordinates

Bremen

W

Definition:

 $P_1, \ldots, P_n, n \ge 3$, in CCW arrangement ("*counter-clockwise*"). A set of functions $\lambda_i : \Omega \to \mathbb{R}$ are called barycentric coordinates if for all $X \in \Omega$ the following conditions are met:

1. Partition of unity:
$$\sum_{i=1}^{n} \lambda_i(X) = 1$$
2. Linear precision: $\sum_{i=1}^{n} \lambda_i(X) P_i = X$

3. Convex combination: $\forall i = 1 \dots n : \lambda_i(X) \ge 0$

- Other desirable characteristics:
 - "Good behavior" with respect to the area outside of $\,arLambda$
 - Smoothness: λ_i should be in \mathcal{C}^∞
 - Affine invariance

The Interpolation Property

• Theorem:

Bremen

W

Any such (generalized) barycentric coordinates have the interpolation property.

That is: let data values f_i be given in the vertices P_i ; then the function

$$f(X) = \sum_{i=1}^n \lambda_i(X) \cdot f_i$$

is actually an interpolating (and not simply approximating) function; it follows that

$$\forall i: f(P_i) = f_i$$

Proof

6

We will show:

 $\lambda_i(P_j) = \delta_{ij}$ (Kronecker Delta)

 Because of properties 1 and 2, one can reproduce all linear functions using barycentric coombinations: Let f(Q) be just such a linear function.

Then

$$f(Q) = \begin{pmatrix} a \\ b \end{pmatrix} Q + c \xrightarrow{\text{Prop. 2}}_{(\text{lin. prec.})} \xrightarrow{\text{Prop. 1}}_{(\text{partition of unity})}$$

$$= \begin{pmatrix} a \\ b \end{pmatrix} \sum \lambda_i(Q) P_i + c \sum \lambda_i(Q)$$

$$= \sum \lambda_i(Q) \left(\begin{pmatrix} a \\ b \end{pmatrix} P_i + c \right)$$

$$= \sum \lambda_i(Q) f(P_i)$$

2. We define plane l(X) so that

$$l(P_1) = 0$$
$$\forall i \ge 2: \ l(P_i) > 0$$

This is possible because Ω is a convex polygon

3. From step 1, it follows that:

$$l(P) = \sum_{i=1}^{n} \lambda_i(P) \cdot l(P_i) = \sum_{i=2}^{n} \lambda_i(P) \cdot l(P_i)$$

l was specially chosen so that

$$0 = l(P_1) = \sum_{i=2}^n \lambda_i(P_1)l(P_i) \Rightarrow \forall i \ge 2 : \lambda_i(P_1) = 0$$

4. Because of property 1:

$$1 = \sum_{i=1}^{n} \lambda_i(P_1) = \lambda_1(P_1)$$

 $l(P_i) > 0$

Trivial Solutions

8

- Triangulate the polygon (in any way possible)
- Determine the barycentric coordinates with reference to the triangle in which X is located

- Problems:
 - The triangulation is not unique

These generalized barycentric coordinates are not unique!

- These barycentric coordinates are only C^0 -continuous
- The extension for points outside of the polygon is unclear

- Goal: construct barycentric coordinates for any convex polygon in 2D
- Observation: since $\sum \lambda_i = 1$, we have

Bremen

$$\sum \lambda_i P_i = X \Leftrightarrow \sum \lambda_i \cdot (P_i - X) = 0$$

If one has functions w_i = w_i(X) for which the following two properties hold,

$$\sum w_i \cdot (P_i - X) = 0 \qquad (1)$$

und $\forall i : w_i \ge 0 \qquad (2)$

then one can easily make "real" barycentric coordinates by just letting

$$\lambda_i = rac{w_i}{\sum_{i=1}^n w_i}$$

 \geq Look for functions w_i that fulfil conditions (1) & (2)

G. Zachmann

- Surface areas:
 - $r_i := \|P_i X\|$
 - $A_i := A_i(X) = \frac{1}{2} \sin \alpha_i \cdot r_i r_{i+1}$ = $\mathcal{F}(\Delta X P_i P_{i+1})$
 - $B_i := B_i(X) = -\frac{1}{2}r_{i-1}r_{i+1}\sin(\alpha_{i-1} + \alpha_i)$ = $\mathcal{F}(\Delta X P_{i+1} P_{i-1})$
 - Note: the sign of B_i is *negative*, if X is outside of $\Delta P_{i-1}P_iP_{i+1}$
 - $C_i := C_i(X) = \mathcal{F}(\Delta P_{i-1}P_iP_{i+1})$ = $A_i + A_{i-1} + B_i$
- Indices: in the following, all indices are meant to be "modulo n", i.e. $P_i := P_{i \mod n}$ and so $P_{n+1} = P_1$, $P_{-1} = P_{n-1}$

